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Approximation formulas to predict values for bond percolation thresholds of periodic graphs make use of
certain features of lattice graphs such as dimension and average degree. We show that a relationship exists
between the average and second-moment of the degree of a graph and the average degree of its line graph.
Using this relationship together with the well-known bond-to-site transformation between the bond percolation
model on a graph and the site percolation model on its line graph, we create a new approximation formula that
improves the accuracy of bond percolation threshold predictions.
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I. INTRODUCTION

Bond percolation thresholds are exactly known for only a
few lattice graphs �1–4�, while much of our knowledge of
numerical threshold values has been derived by simulations,
e.g., Ref. �5�. To explain the simulation results, considerable
research has been devoted to the derivation of approximation
formulas which provide predicted percolation threshold val-
ues that are close to the true percolation threshold. See, e.g.,
Ref. �6–18�. These universal formulas, as they have been
called, are based on a small number of features of the lattice
graph, typically the dimension d and average vertex degree
q.

One universal formula worth noting for bond percolation
models was suggested by Vyssotsky, Gordon, Frish, and
Hammersley �VGFH� �19�, who studied bond percolation on
eight regular two- and three-dimensional lattice graphs. Their
universal formula

p̃c =
d

�d − 1�q

is based on dimension and average vertex degree, so the
predicted percolation threshold p̃c is the same for different
lattice graphs if d and q are the same.

Galam and Mauger �8,9� provided the power law formula

p̃c = p0��d − 1��q − 1��−adb, �1�

which we denote by GM-pl. With different values of the
parameters p0, a, and b, it approximates both bond and site
percolation thresholds. The parameter values were deter-
mined by a fit to exactly known or precisely estimated per-
colation threshold values for several lattices, which were
classified into three “universality classes.” One of these
classes included the two-dimensional square, triangular,
hexagonal, and dice lattices, for which p0=0.6558 and
a=b=0.6897 for bond models. For the kagomé lattice and
the other regular lattices with 3�d�7 they considered,
p0=0.7541 and a=b=0.9346 for bond percolation. �A third
class, which we will not consider here, consisted of lattices
in eight or more dimensions.�

One motivation for our investigation is the fact that sev-
eral lattice graphs with the same dimension and average de-
gree nevertheless have a relatively wide range of bond per-

colation threshold values. This suggests that there may be
another feature of the lattice graph, in addition to dimension
and average degree, that affects the value of the percolation
threshold. Some previous research suggests that variability
of the vertex degree may play a role �20,21�, although the
appropriate measure of variability is not obvious.

The remainder of this paper is organized as follows. Sec-
tion II provides several items of background information
about percolation thresholds and universal formulas. In Sec.
III, we derive a formula for the average degree of a line
graph in terms of the average degree and second moment of
the degree of the underlying graph. In Sec. IV, we introduce
an approximation formula which incorporates variability into
a bond percolation threshold universal formula. Our formula
uses the second moment of the vertex degree, which essen-
tially uses the variance as the measure of variability. The use
of the second moment is justified by the bond-to-site trans-
formation, by showing that if site threshold formulas are a
function of the average degree, then bond threshold formulas
should be a function of the second moment of the degree. We
also compare the accuracy of our formula to that of the
VGFH and GM-pl formulas, and evaluate it on the basis of
criteria developed by Wierman and Naor �22�. Concluding
remarks and directions for further research are discussed in
Sec. V.

II. BACKGROUND

A. Periodic planar lattice graphs

We will consider only percolation models defined on in-
finite planar two-dimensional graphs that are periodic ac-
cording to the definition of Kesten �2�. To summarize briefly,
a periodic graph has finitely many edges incident to each
vertex, is connected, contains no loops, and may be imbed-
ded in R2 in such a way that each coordinate vector is a
period for the image and every compact set of R2 intersects
only finitely many edges. A planar graph may be imbedded
in the plane with no intersections of edges except at their
endpoints. We restrict to two-dimensions, since all exact
bond threshold solutions and the majority of simulation esti-
mates for bond models are for two-dimenional lattices.

B. Evaluation criteria

Wierman and Naor �22� proposed that universal formulas
should satisfy certain “desirable” properties so that the for-
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mulas are consistent with properties that are proved to be
true for percolation models. Briefly stated, bond percolation
universal formulas should be unambiguously defined, be a
function of graph parameters that are easily computed, take
only values between zero and one, be as accurate as possible,
and be consistent with the duality relationship, containment
principle, contraction principle, and subdivision of edges.
Wierman and Naor �22� illustrate the use of the criteria in the
evaluation of two bond threshold formulas and two site
threshold formulas. No existing formula satisfies or performs
well on all of the criteria.

C. Incorporating duality

Wierman, Naor, and Cheng �23� introduced a technique
for incorporating the matching property into a universal for-
mula for site percolation thresholds. The technique can be
adapted to incorporate duality into a bond percolation thresh-
old approximation formula. Consider a planar graph G, and
denote its dual graph by D�G�. From any bond threshold
approximation formula for planar graphs f�·�, we can define
a parametrized family of universal formulas ga�·� by

ga�G� =
f�G�a

f�G�a + f�D�G��a .

The modified formulas ga�·�, will each satisfy the duality
property

ga�G� + ga�D�G�� = 1,

while other desirable properties of the original formula f�·�
are preserved. We can optimize over the parameter a by
choosing the value a* which minimizes the average error for
a set of lattices for which there are percolation threshold
exact values or reliable estimates. In the application to site
models, the modified formula was considerably more accu-
rate than the original formula. We will apply this modifica-
tion technique in the development of our bond threshold for-
mula.

D. Bond-to-site transformation

From any lattice graph G, we may construct a new graph
L�G�, called the “line graph” or “covering graph,” by placing
a vertex of L�G� on each edge of G, and placing an edge
between two vertices of L�G� if the corresponding edges the
corresponding vertices represent are adjacent in G.

By the well-known bond-to-site transformation �24�, a
bond percolation model on a graph G is equivalent to the site
percolation model on its line graph L�G�. Thus, the bond
percolation threshold of G is equal to the site percolation
threshold of L�G�, i.e.,

pc�Gbond� = pc�L�G�site� .

Ideally, bond and site threshold universal formulas should
be consistent with this relationship. Since most site percola-
tion universal formulas are functions of the average vertex
degree of the graph, to obtain consistency, a bond percolation
universal formula for a lattice graph should depend on the

average degree of its line graph. For this reason, in the next
section we derive an expression for the average degree of the
line graph in terms of characteristics of the original graph.
For consistency with the bond-to-site transformation, a bond
percolation formula should depend on these characteristics.

III. THE AVERAGE DEGREE OF A LINE GRAPH

We now derive a formula for the average degree of a line
graph L�G� in terms of the degrees of vertices in the under-
lying graph G. Note that in the remainder of this paper we
use d to denote degree rather than dimension. Note also that
the following derivation applies to a finite graph, but can be
extended to an infinite periodic graph by considering the
limit as a rectangular region is expanded.

Note that every vertex z in L�G� corresponds to an edge in
G with two end vertices, say uz and vz. Since z is connected
to the vertices of L�G� corresponding to all the other edges
incident to uz and vz, the vertex degree d�z� of every z�L is

d�z� = �d�uz� − 1� + �d�vz� − 1� = d�uz� + d�vz� − 2.

Thus, q�L�, the average degree of the line graph L�G�, is

q�L� =
�z�L�G� d�z�

�V�L�G���
=

�z�L�G� �d�uz� + d�vz� − 2�

�V�L�G���
,

where �V�L�G��� denotes the number of vertices in L�G�.
We wish to express this summation in terms of the de-

grees of vertices in G. First, by construction of the line
graph, the number of vertices in L�G� is equal to the number
of edges in G, denoted by �E�G��. Secondly, since there are
d�v� edges incident to each vertex v�G, then the term d�v�
appears in the sum above d�v� times. Therefore,

q�L� =
�v�G

d�v�2 − 2�E�G��

�E�G��
=

2�v�G
d�v�2/�V�G��

2�E�G��/�V�G��
− 2.

Since each edge has two endpoints, we recognize the de-
nominator in this expression as the average degree of G,
E�d�. The numerator is the average squared degree, or sec-
ond moment of the degree, E�d2�. Thus, we obtain the for-
mula

q�L� = 2�E�d2�
E�d�

− 1� .

We have shown that the average degree of a line graph
L�G� is a function of the first and second moments
of the vertex degree of G. By the standard identity Var�d�
=E�d2�−E�d�2, it is a function of the mean and variance of
the degree of G.

IV. A BOND MODEL APPROXIMATION FORMULA
INCORPORATING VARIABILITY

A. The formula

To interpret the result of the previous section in terms of
universal formulas, we may state that if site model formulas
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use average vertex degree, then second moment or variance
of degree must be a factor in bond model formulas. How-
ever, the authors are not aware of any bond model universal
formula that incorporates the vertex degree variance or sec-
ond moment.

Note that the expression derived for q�L� includes the
ratio E�d2� /E�d�. For a regular lattice, i.e., a lattice with
uniform degree, this ratio is equal to the average degree. If
the lattice has variability in the degree of its vertices, then
this ratio is greater than the average degree. From this obser-
vation, a simple way to incorporate variability into a bond
percolation universal formula is to start with an existing for-
mula based on average degree and substitute the ratio for the
average degree. If this approach is used to modify the VGFH
formula, we obtain

2

�E�d2�
E�d�

� .

However, this formula does not satisfy the duality prop-
erty for planar lattices. �Consider the kagomé and dice lat-
tices, for example.� The formula may be modified as de-
scribed in Sec. II C to incorporate duality, then simplified
algebraically. The optimum value of the exponent was nu-
merically determined to be 0.9145. �Note that a minimum
average error rounding to 0.0040 was obtained for the inter-
val of values 0.9097�a�0.9160.� As a result, we propose a
new bond percolation approximation formula, denoted WNS,
given by

p̃c�G� =

�E�dD�G�
2 �

E�dD�G��
�0.9145

�E�dG
2 �

E�dG�
�0.9145

+ �E�dD�G�
2 �

E�dD�G��
�0.9145 ,

where the subscript on d indicates the lattice graph consid-
ered.

B. Evaluation and comparison with the VGFH
and GM-pl formulas

Table I shows evaluations of the WNS, VGFH, and
GM-pl formulas on planar periodic graphs using the
Wierman-Naor criteria. Note that, for this class of graphs, the
WNS formula satisfies exactly the same theoretical criteria as
the VGFH formula. It is important to point out, however, that
because of the planarity restriction, the WNS formula is un-
defined for any graph of dimension greater than 2. On the
other hand, the VGFH and GM-pl formulas do not require
planarity, so they apply to a much wider class of lattice
graphs than the WNS formula.

However, the WNS formula has a considerable advantage
in accuracy for the class of planar periodic graphs, where it
performs substantially better than either the VGFH or the
GM-pl formula. The accuracy evaluation in Table I is based
on data from Table II, which shows values for percolation
threshold estimates using WNS, VGFH, and GM-pl, and
compares them with exact and simulated values for the
threshold for 21 lattices.

Note that the WNS formula has smaller or equal errors
than the VGFH formula for all 21 lattice graphs, and smaller
errors than the GM-pl formula for all but one of the 21 lat-
tices. The WNS formula significantly reduces the maximum
error to 0.0109, from 0.0737 for the VGFH formula and
0.0607 for the GM-pl formula. The mean error is reduced by
83% from 0.0235 for VGFH and 73% from 0.0147 for GM-
pl. Median error is reduced comparably by the WNS for-
mula, to 0.0019 from 0.0196 with VGFH and 0.0093 with
GM-pl.

The WNS formula improves accuracy by distinguishing
between lattices that have the same average degree. For ex-
ample, the �3,122�, �4,6 ,12�, �4,82�, and hexagonal lattices
all have average degree 3—in fact, all vertices of these lat-
tices have degree three. Thus, the VGFH formula gives the
same estimate 0.6666. . . for the bond percolation threshold of
all four lattices. Even though the second moment of the de-
gree of all these lattices are identical, equal to 9, the fact that
their dual lattices have second moments ranging from 36 to
54 causes their WNS bond percolation threshold estimates to
range from 0.6527 to 0.7320. Similar distinguishing between
lattices occurs for the lattices of average degree 10

3 , 4,
5, and 6.

V. CONCLUDING REMARKS

We have proposed a bond percolation threshold approxi-
mation formula for planar lattices, derived using mathemati-
cal principles. We derived a formula for the average degree
of a line graph in terms of the average degree and second
moment of the degree of its underlying graph. To be consis-
tent with the bond-to-site transformation, this implies that if
average degree is a factor in predicting site percolation
thresholds, then the second moment of the degree or, equiva-
lently, the variance of the degree, is a factor in predicting
bond percolation thresholds. To be consistent with the duality

TABLE I. A comparison of the WNS, VGFH, and GM-pl bond
threshold approximation formulas according to the Wierman-Naor
criteria.

Property WNS VGFH GM-pl

Well-defined Yes Yes No

Computable Yes Yes Partly

Values in �0,1� Yes Yes No

Adjacency Yes Yes Partly

Accuracy �maximum� 0.0109 0.0737 0.0607

Excellent Fair Fair

Accuracy �mean� 0.0040 0.0235 0.0147

Excellent Good Good

Accuracy �median� 0.0019 0.0196 0.0093

Excellent Good Excellent

Duality Yes Yes Fair

Containment No No No

Contraction No No No

Subdivision No No No
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property for bond percolation thresholds of planar graphs, we
use a technique to produce an estimator consistent with du-
ality from one that is not. The resulting comparison of values
estimated by our formula with exact or accurate simulated
values shows that the combination of duality and second
moment of vertex degree is valuable in improving the accu-
racy of bond percolation approximation formulas for planar
lattices.

Further research, in progress, is applying similar tech-
niques to predict site percolation model thresholds. Current
site model universal formulas are typically based on average
degree, and thus do not distinguish between lattices with the

same average degree. Preliminary results indicate that incor-
porating variance into site model universal formulas will
lead to improved performance. Another direction of research
in progress is incorporating variability into universal formu-
las for percolation thresholds in higher dimensions, where
the duality and matching techniques cannot be used.
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